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Abstract—The paper presents a comprehensive inves-
tigation into a secure target-tracking system employ-
ing Unmanned Aerial Vehicles (UAVs) within urban
environments. We introduce the Enhanced Multi-Agent
Q-Learning (E-MAQL) algorithm designed to enhance
target-tracking accuracy while minimizing energy con-
sumption by UAVs. Additionally, we propose a robust
security framework leveraging Deep Q-Networks (DQN)
for Intrusion Detection Systems (IDS), alongside the
implementation of Advanced Encryption Standard (AES)
and Lightweight AES (LW-AES) protocols to ensure
secure communication within the Open Radio Access
Network (O-RAN) architecture. Our evaluations validate
the effectiveness of E-MAQL in improving tracking
performance and reducing energy consumption, while
the proposed security framework demonstrates promising
results in detecting and mitigating potential security
threats within O-RAN-based systems. Furthermore, we
measured the False Positive Ratio (FPR) of the IDS
at 6%. Notably, our security framework significantly
enhances the target-tracking system’s accuracy by 33%
when exposed to false injection data attacks, elevating
accuracy from 53% to 86%.

Index Terms—Target-tracking, UAVs, IDS, AES, O-
RAN

I. INTRODUCTION

Target-tracking is vital across various domains, with
Unmanned Aerial Vehicles (UAVs) revolutionizing its
efficacy [1]. Today, UAVs have a vital role in aerial
surveillance, reconnaissance, and search and rescue op-
erations, equipped with advanced sensors like cameras
and radar systems. They enhance situational awareness
crucial in military, law enforcement, and disaster re-
sponse scenarios. Integrating UAVs in target-tracking
expands applications, from precision agriculture to
infrastructure inspection, highlighting their versatility.
Studies like [2] focus on real-time tracking with deep
learning, [3] enhances UAV control in dynamic envi-
ronments, and [4] improves tracking coordination. De-
spite advancements, challenges persist in UAV-based
target-tracking.

Current research on UAV-based target-tracking sys-
tems has primarily focused on enhancing tracking
accuracy through collaborative efforts among UAVs
and other network entities. However, there is a no-
table gap in addressing potential security threats, such
as data manipulation, communication interference, or
unauthorized access to system components, which
can significantly impact tracking accuracy. As high-
lighted in [5], UAV security challenges encompass var-
ious domains, including sensors, hardware, software,
and communication. Secure communication is espe-
cially vital, ensuring UAVs operate securely. In target-
tracking scenarios, UAVs communicate wirelessly with
each other and ground control stations, yet unstable
communication links and the open nature of wireless
communication expose UAVs to attacks compromising
confidentiality, integrity, authenticity, and availability,
potentially leading to inaccurate target-tracking.

In addressing these security challenges, [6] intro-
duced a lightweight Intrusion Detection and Prevention
System (IDPS) module tailored for UAVs, employing
Deep Q-learning (DQN) within a Deep Reinforcement
Learning (DRL) framework. This module enhances
UAVs’ ability to autonomously detect and respond to
suspicious activities, thereby bolstering network secu-
rity. In He et al. [7], a collaborative intrusion detection
approach is proposed for UAV-based IoT networks,
leveraging a Conditional Generative Adversarial Net
(CGAN)-based algorithm with blockchain-enabled dis-
tributed federated learning to improve intrusion detec-
tion accuracy while ensuring data security and pri-
vacy. In [8] an Efficient and Secure Communication
Mechanism (ESCM) is developed for UAV networks,
featuring an ABC algorithm-based routing protocol and
blockchain-enhanced security mechanisms to establish
a static network environment, CyberUAV, ensuring
efficient and secure communication despite high mobil-
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ity. Despite these advancements, the security concerns
in existing security schemes and protocols for UAV
networks employed in target-tracking systems remain
a significant challenge that needs to be fully addressed.

Motivation. Motivated by accuracy, power limita-
tions, and security concerns, we present a secure
target-tracking approach. This work aims to not only
achieve precise target-tracking with minimal power
consumption but also ensure secure communication
among the entities involved in the network. To fulfill
this objective, we design a network model comprising
mobile ground-based sensor nodes (SNs), Multi-access
Edge Computing (MEC) nodes, and UAVs, which
will be elaborated further in the next section. Our
network model leverages Open Radio Access Network
(O-RAN) to enhance connectivity and communication
between ground-level SNs, MECs, and UAVs. This
integration optimizes data collection and transmission,
increasing network efficiency, performance, and reli-
ability [9], [10]. This paper has the following main
contributions:

• We integrate O-RAN-enabled UAVs into the target-
tracking system to optimize communication among
ground-level SNs, MECs, and UAVs for enhanced
network efficiency and reliability.

• We introduce an Enhanced Multi-Agent Q-Learning
(E-MAQL)-based target-tracking algorithm utilizing
UAVs, primarily focusing on enhancing accuracy
and minimizing energy consumption within urban
environments. This approach leverages Q-Learning
(QL) to improve tracking efficiency in dynamic
urban landscapes, addressing challenges such as ob-
stacles and varied target trajectories.

• We develop a robust security framework comprising
three integral components: an Deep Q-Network-
based Intrusion Detection System (DQN-based IDS),
the Advanced Encryption Standard (AES) protocol,
and a LightWeight AES (LW-AES) protocol to en-
sure secure communication within the network. This
framework prioritizes data integrity, authenticity, and
confidentiality, implementing measures such as en-
cryption and authentication to fortify the network
against potential security threats.

• We assess the effectiveness of our proposed E-
MAQL algorithm and security framework through
multiple metrics including accuracy of target-
tracking, accuracy of the security framework, power
consumption, latency and False Positive Ratio (FPR).

The rest of the paper is structured as follows: Sec-
tion II presents our proposed target-tracking architec-
ture in O-RAN. It also outlines the threat model and
security requirements. Section III presents proposed
algorithms for E-MAQL, IDS, AES, and LW-AES.

Section IV outlines how the performance of this work
was evaluated using experimental results. Finally, Sec-
tion V provides a conclusion and proposes outlooks.

II. TARGET-TRACKING ARCHITECTURE IN O-RAN

This section introduces the seamless integration of
O-RAN-enabled UAVs within the target-tracking sys-
tem.

A. Proposed System Model

The system aims to efficiently track moving ground
targets, like vehicles, within urban environments, uti-
lizing components such as mobile SNs, UAVs, MEC
nodes, and intelligent controllers. As illustrated in Fig.
1, these components are interconnected within the O-
RAN architecture, forming a robust network structure.
The O-RAN deployment includes a microcell base
station (mBS) and a network of MECs and small-
cell base stations, enhancing network coverage and
efficiency for optimal target tracking in urban envi-
ronments. Communication occurs wirelessly through
cellular networks technologies like LTE/5G and dedi-
cated radio links, enabling seamless connectivity and
efficient data exchange. This comprehensive architec-
ture ensures smooth communication and collaboration,
facilitating efficient data flow and robust decision-
making capabilities. At its core, the O-RAN infras-
tructure acts as a backbone, managing communication
channels among UAVs, MEC nodes, mobile SNs, and
other network elements. Strategically positioned on the
urban area, mobile SNs play a pivotal role in collecting
real-time data on target movements. Utilizing the O-
RAN’s capabilities, these SNs swiftly detect specific
targets, such as vehicles requiring monitoring, and
relay their precise locations in real-time via messaging
protocols. MEC nodes serve as intermediaries, facil-
itating seamless data exchange between SNs, UAVs,
and the O-RAN infrastructure. MEC nodes analyze
the data acquired from SNs and, taking into account
the geographical location of the target node, choose
an optimal set of UAVs for tracking. In this process,
MECs assess factors such as the proximity of UAVs
to the target and the remaining battery power of each
UAV, ensuring efficient and effective tracking opera-
tions. The MEC nodes has a pivotal role in enhancing
real-time decision-making and reducing latency by
processing critical data closer to its source. Meanwhile,
UAVs dynamically navigate the airspace to track the
target, receiving instructions from MECs to optimize
routes and collaboratively enhance tracking accuracy.

In scenarios where a mobile target traverses a prede-
fined path on the ground, coordination between SNs,
MECs, and UAVs is vital for tracking its trajectory
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Fig. 1. O-RAN-based System Model.

effectively. As UAVs commence tracking, they contin-
uously monitor the target’s movements, dynamically
adjusting their positions to maintain surveillance. Uti-
lizing advanced sensing technologies, UAVs capture
relevant data points and relay them to MECs for
analysis, while bidirectional communication with MEC
nodes enables UAVs to receive updates and adjust
trajectory parameters as needed.

Moreover, UAVs monitor power levels to ensure
uninterrupted operations, signaling MEC nodes when
thresholds are reached for proactive management and
seamless transitions. Secure communication among
entities—MEC-UAV, UAV-UAV, and MEC-MEC—is
essential to safeguard data integrity and confidentiality
from potential threats. Robust encryption, authentica-
tion, and intrusion detection systems are crucial for
maintaining the dependability of the target-tracking
system amidst dynamic environments.

B. Threat Model

In our UAV-based target-tracking system, we address
a threat model where adversaries attempt to compro-
mise tracking integrity by injecting false data into the
network. Here, attackers aim to deceive the system by
transmitting inaccurate location information or other
falsified data, leading to erroneous tracking results
and potential disruptions. The adversaries’ goal is to
undermine tracking accuracy and reliability without di-
rectly interfering with infrastructure or communication
channels.

C. Security Requirements

Based on the outlined threat model, it is imperative
to adhere to several security requirements to uphold the
integrity and confidentiality of data exchange. These
requirements encompass:

• Secure Communication: Implementing secure com-
munication protocols among all parties involved, to
prevent unauthorized access, data interception, or
tampering.

• Authentication: Implementing robust authentication
methods to verify the identities of communicating
parties, preventing unauthorized entities from gain-
ing access to the network.

• Intrusion Detection: Deploying intrusion detection
systems to monitor network traffic and detect any
suspicious or malicious activities, enabling timely
responses to potential security threats.
By adhering to these security requirements, the

target-tracking system can effectively mitigate poten-
tial security risks and ensure the reliability and trust-
worthiness of its operations.

III. THE PROPOSED ALGORITHMS

This study focuses on securing target-tracking using
UAVs, MECs, and SNs within the O-RAN network
architecture. Our main objective is to ensure pre-
cise tracking despite potential inaccuracies from faulty
sensors or malicious data tampering. Considering the
power limitations of UAVs, we also prioritize energy-
efficient tracking methods.

In response to the above mentioned challenges,
we propose a target-tracking approach that leverages
the MAQL algorithm, considering both accuracy and
UAV power constraints. Additionally, we integrate a
security framework into our target-tracking algorithm,
incorporating Lightweight Advance Encryption Stan-
dard (LW-AES) protocol and an IDS within the O-
RAN architecture. This holistic approach addresses the
dual objectives of achieving precise tracking while
safeguarding against security threats. In the follow-
ing sections, we comprehensively explain our MAQL-
based algorithm for target-tracking. Additionally, we
delve into the details of our security framework, which
hinges on utilizing AES encryption and IDS tech-
nology. By elaborating on these components, we aim
to thoroughly understand how our proposed approach
effectively addresses the challenges of accurate target-
tracking while ensuring robust security within the O-
RAN framework.

A. Enhanced MAQL-based Algorithm (E-MAQL)

We aim to extend the research outlined in [11],
which employed the standard Q-learning algorithm
for target-tracking. In [11], a challenge exists where
the utilized algorithm led to a zig-zag movement
pattern for the UAVs, resulting in increased power
consumption. To address this issue effectively, the
current research endeavors to enhance the algorithm’s
performance and mitigate the occurrence of zig-zag
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Fig. 2. E-MAQL Algorithm.

movement. By refining the algorithm used in [11],
the aim is to achieve smoother UAV trajectories and
optimize power utilization for more efficient target-
tracking operations.

Q-learning operates within the Markov Decision
Processes (MDPs) framework, as described in [12].
Within this framework, decisions are made based on
the current state. Like other reinforcement learning
algorithms, Q-learning considers the current state and
selects the following possible action accordingly. Since
targets can change direction continuously, UAVs must
adjust their direction accordingly to track the target
accurately. This dynamic nature often results in UAVs
exhibiting a zig-zag movement pattern, leading to
increased energy consumption and inefficiencies in
monitoring performance.

As mentioned above, we have enhanced the algo-
rithm used in [11] by incorporating additional consider-
ations beyond the current state and subsequent action.
Specifically, we now also consider the last action taken
by the UAVs. This enhancement enables the algorithm
to anticipate better and adapt to changes in the tar-
get’s movement, thereby improving the efficiency and
accuracy of the tracking process. By integrating this
modification, we aim to mitigate the zig-zag movement
pattern observed in previous iterations of the algorithm,
ultimately enhancing the overall performance of our
target-tracking system. Fig. 2 illustrates the E-MAQL
based on this strategy.

B. Our Security Framework: DQN-based IDS and LW-
AES

This section presents our security enhancement
framework tailored for O-RAN-enabled UAVs within
the target-tracking system developed in this study. Our
framework comprises three primary components: an
IDS, AES, and LW-AES. Using the AES and LW-
AES protocols, we aim to ensure network security
through IDS implementation and secure communica-
tion between UAV-UAV, MEC-UAV, and MEC-MEC
interactions. As depicted in Fig. 3, we implement
a centralized DQN-based IDS within the Near-RT
RIC, utilizing AES for ensuring secure MEC-MEC
communication, and LW-AES for securing UAV-UAV
and MEC-UAV communications. We elaborate on each
component in the subsequent sections:

UAV #1, CH UAV #2

UAV #3

MEC #2 MEC #1

AES 

LW-AES 

LW
-A

ES
 

DQN-based IDS
PKI 

Fig. 3. High-level of Our Security Framework.

1) The Proposed DQN-based IDS: Today, UAVs
are increasingly utilized in various applications, includ-
ing target-tracking systems. However, the vulnerability
of UAV networks to cyber-attacks poses significant
security challenges. We propose a DQN-based IDS
designed for O-RAN-enabled UAV networks to address
this. The proposed IDS operates within the Near-
RT RIC framework, which serves as a centralized
intelligence hub for managing and optimizing radio
resources in UAV networks. Leveraging the capabilities
of the RIC, our IDS uses DQN techniques to detect
and mitigate potential intrusions in real time. This
integration enables seamless coordination between net-
work management and security functions, facilitating
proactive threat response and ensuring the integrity of
UAV operations.

Traditional rule-based IDS systems rely on prede-
fined signatures and heuristic rules to identify known
attack patterns. However, these approaches could be
improved in adapting to evolving threat landscapes and
detecting novel attack vectors. In contrast, our DQN-
based IDS takes a dynamic and adaptive approach
to intrusion detection, autonomously learning from
network data to identify abnormal behavior indicative
of security threats.

Algorithm 1 initializes a replay memory D to store
experiences, sets up two Q-networks with random
weights θ (the main Q-network) and θ′ (the target
Q-network), and initializes a feature selection algo-
rithm. It then proceeds to train the DQN-based IDS
over a fixed number of episodes (M ), where the
IDS interacts with the environment representing the
monitored network for intrusions. At each episode’s
start, network features are collected to form the initial
state s1. During action selection at each time step
within the episode, the IDS chooses an action at
using an ϵ-greedy policy, balancing exploration and
exploitation. This action corresponds to the IDS’s
decision on normal network activity or potential in-
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Algorithm 1: DQN-based IDS with Feature Selec-
tion

1: Input: Network features, Replay memory
capacity N , Number of episodes M , Maximum
timestep T , Exploration parameter ϵ, Discount
factor γ, Update frequency C

2: Initialize replay memory D to capacity N
3: Initialize Q-network with random weights θ
4: Initialize target Q-network with weights θ′ ← θ
5: Initialize feature selection algorithm (e.g.,

information gain)
6: for episode = 1 to M do
7: Initialize state s1 by collecting network

features
8: for timestep = 1 to T do
9: Select action at using ϵ-greedy policy based

on Q(st, a; θ)
10: Execute action at and observe reward rt and

new state st+1

11: Preprocess st+1 to extract relevant features
ft+1

12: Store transition (st, at, rt, st+1) in D
13: Sample random minibatch of transitions

(sj , aj , rj , sj+1) from D
14: Calculate target values

Qtarget = rj + γmaxa′ Q(sj+1, a
′; θ′)

15: Update Q-network parameters by
minimizing the loss:

16: L = 1
N

∑
j(Q(sj , aj ; θ)−Qtarget)

2

17: Every C steps, update target Q-network:
θ′ ← θ

18: end for
19: Update feature selection algorithm with

observed states and rewards
20: end for
21: Output: Trained Q-network with weights θ

trusion. After executing the selected action, resulting
in a reward rt and a new state st+1, the new state
is preprocessed using a feature selection algorithm to
extract relevant features ft+1 capturing crucial network
behavior. These features are essential for optimizing
tracking accuracy and operational efficiency in the
target-tracking system. The algorithm then stores the
transition (st, at, rt, st+1) in the replay memory D,
samples a random minibatch of transitions from D
for training, calculates the target Q-values Qtarget,
and updates the Q-network parameters to minimize
the loss function L. Periodic updates of the target
Q-network parameters θ′ ensure alignment with the
main Q-network θ. After each episode, the feature
selection algorithm adapts the selected features based

on observed states and rewards to enhance intrusion
detection effectiveness.

2) AES with PKI: Our target-tracking system im-
plements AES protocol for secure communication be-
tween MEC nodes (MEC-MEC). This setup is fortified
by a robust PKI and an advanced session key genera-
tion mechanism, ensuring data transmission security.
AES operates as a symmetric encryption algorithm,
necessitating both MECs to possess a shared secret
key for encryption and decryption. To establish secure
communication channels, we adopt a hybrid encryption
approach, combining AES with asymmetric encryption
from PKI. The process begins with initiating a com-
munication session, where the initiating node generates
a temporary session key (K) using a cryptographic
pseudorandom number generator (CSPRNG). This key
is unpredictably generated and of a predetermined
length. The initiating MEC node encrypts K using the
recipient’s public key (PKr) from PKI, typically with
an algorithm like RSA. The encrypted session key (K )
and other necessary parameters are then transmitted to
the recipient MEC node. Upon receipt, the recipient
decrypts K using its private key (SKr), ensuring only
the intended recipient accesses the session key. With
the session key exchanged, both MEC nodes utilize
AES encryption for their communication, ensuring
confidentiality and integrity of the exchanged data.

3) LightWeight AES (LW-AES): In this section,
we detail the utilization of a lightweight version of
the AES in conjunction with the EAX mode for en-
suring secure UAV-UAV and UAV-MEC communica-
tions where EAX is a block-cipher mode of operation
for solving the problem of Authenticated-Encryption
with Associated-Data (AEAD) [13]. The LW-AES
algorithm is optimized for efficient encryption and
decryption operations on resource-constrained devices
such as UAVs.

Considering the diverse array of sensors integrated
into UAVs, leading to varying data lengths, it is
clear that a flexible mode capable of accommodating
dynamic data can be more suitable. In light of this
requirement, the EAX mode is selected because of
the adaptability to handle data of varying lengths
efficiently. As an online algorithm, EAX processes
data in real-time without prior knowledge of the data
length. It operates seamlessly with inputs such as a
nonce (N ) of any length, a header (H) with variable
length, and a message (M ) with variable length. EAX
ensures the confidentiality of M and the authenticity of
both M and H , making it an ideal choice for securing
communication in UAV networks where data lengths
may vary unpredictably [14].

To utilize the EAX mode for AES encryption,
we divide it into two main components: the encryp-
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Algorithm 2: Encryption Algorithm

1: Input: Key,H,N,M
2: CT ← BlockCipher(EAXEnc,Key,N)⊕M
3: τ ← MAC(CT,H)
4: Output: CT, τ

Algorithm 3: Decryption Algorithm

1: Input: Key,H,N,CT, tau
2: M ← BlockCipher(EAXDec,Key,N)⊕ CT
3: τ ′ ← MAC(CT,H)
4: if τ ′ ̸= τ then
5: Error: Authentication failed
6: end if
7: Output: M

tion function (EAXEnc) and the decryption function
(EAXDec). The encryption function EAXEnc oper-
ates as a symmetric encryption algorithm, typically em-
ploying AES, denoted as EAXEnc : Key×{0, 1}n →
{0, 1}n. It takes a key (of length n) and a plaintext
block as inputs and produces a ciphertext block of
the same length. Similarly, the decryption function
(EAXDec) reverses this process, decrypting ciphertext
blocks back to their original plaintext form. Addition-
ally, the EAX mode incorporates a tag length param-
eter (τ ) denoted as τ ∈ [0 · · ·n], which determines
the length of the authentication tag generated during
encryption. This tag serves to ensure the integrity
and authenticity of the encrypted data and is typically
chosen to be between 0 and the block size n of the
block cipher.

These parameters, EAXEnc, EAXDec, and τ , are
chosen before initiating a specific session that will
employ the EAX mode. It’s crucial to fix these pa-
rameters consistently across all participants in the
communication session to ensure interoperability and
security.

In the context of secure communication between
two UAVs, the EAX mode scheme denoted as
EAX[EAXEnc, EAXDec, τ ]. This scheme ensures
both the confidentiality and authenticity of the trans-
mitted data. The encryption algorithm operates with
the signature Key × H × N × M → CT . Upon
receiving the ciphertext, the decryption algorithm, with
the signature Key ×H ×N × CT → M verifies the
authenticity of the ciphertext and recovers the original
plaintext message where Key is the shared secret key
known only to the communicating UAVs. Here, N , H ,
M , and CT represent binary strings {0, 1}∗, with N
as the nonce, H as the header, M as the message, and
CT as the resulting ciphertext.

In Algorithm 2 and 3, the Message Authentication
Code (MAC) used in the EAX mode algorithm is a
cryptographic hash function applied to the ciphertext
and the header. It ensures the integrity and authenticity
of the ciphertext and the associated header. In EAX
mode, the MAC is computed using a secure crypto-
graphic hash function, such as Hash-based Message
Authentication Code (HMAC), to generate a fixed-
size tag based on the input data. This tag is then
used to verify the integrity of the received ciphertext
and header during decryption. If the computed tag
matches the received tag, it confirms that the ciphertext
and header have not been tampered with, assuring the
message’s integrity and authenticity.

IV. NUMERICAL RESULTS

This section presents simulation results for our
target-tracking system, evaluating tracking accuracy,
UAV power consumption, latency, and security frame-
work resilience.

A. Dataset Description and Preprocessing

The dataset is generated by simulating the movement
of UAVs and the target in a virtual environment using
MATLAB. Trajectories of the UAVs and the target
are recorded over time, capturing their positions and
velocities at regular intervals. The attacker UAV injects
false location data into the network by broadcasting
incorrect position information. In the preprocessing
stage, several steps are undertaken to prepare the
dataset for training the DQN-based IDS: (I) Normal-
ization is applied to ensure uniform scaling of the
trajectories and velocities of the UAVs across different
features. (II) Relevant features, such as the positions
and velocities of the UAVs, are extracted from the
dataset to construct the input features for the IDS.
Each data point in the dataset is then labeled based
on whether it represents normal behavior or an attack
by the malicious UAV. Subsequently, the dataset is
partitioned into training and testing sets to assess the
IDS’s performance. (III) A portion of the dataset is
allocated for testing the IDS’s robustness against false
data injection.

B. Simulation Setup

We conducted simulations using MATLAB on a
laptop with an 11th Gen Intel(R) Core(TM) i7-1165G7
processor and 16.0 GB of RAM to evaluate a target-
tracking system employing the E-MAQL algorithm.
The system includes one target and multiple UAVs
tracking it, along with two MEC nodes and 10 SNs
deployed in an environment featuring 100 cylindrical
obstacles. The UAVs’ speed ranges from 0 to 5 m/s,
while the target’s trajectory spans from coordinates
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TABLE I
SIMULATION SETUP PARAMETERS

Parameter Value
Number of UAVs 2 - 4
Number of MECs 2
Number of SNs 10
Target Start Coordinates (10,60)
Target End Coordinates (300,150)
Number of Obstacles 100
UAV Speed Range 0 - 5 m/s
Target Average Velocity 3 m/s
Action Space for UAVs 8
UAV Mass 4kg

Fig. 4. The 3D urban environment with obstacles.

(10,60) to (300,150), with an average speed of 3 m/s.
Each UAV weighs 4kg, and the E-MAQL algorithm
operates with an action space of 8 distinct actions. In
a threat scenario, one UAV acts as an attacker aiming
to inject falsified data, threatening network integrity.
Additionally, we compared the system’s performance
under two network architectures: traditional RAN,
characterized by a monolithic structure, and O-RAN,
featuring distributed architecture with virtualized MEC
nodes. Table I presents the parameters used in the
simulation setup.

To implement the DQN-based IDS, we utilized
the TensorFlow framework for its robust features
in constructing and training deep learning
models. Additionally, for AES and LW-AES
encryption in MATLAB, we employed the
Java libraries javax.crypto.Cipher and
javax.crypto.spec.SecretKeySpec.

C. Performance Results

To assess the accuracy of the proposed E-MAQL
algorithm in the target-tracking system, we investigated
the impact of varying the number of UAVs on system
performance and resource allocation. We conducted
a thorough evaluation under different configurations,
utilizing 2, 3, and 4 UAVs for tracking a target along
a specified trajectory (see Fig. 4). This analysis offers

Fig. 5. Comparison of RMSE between the CRLB-based
control and E-MAQL with 2, 3, and 4 UAVs across 100
Monte Carlo experiments.

insights into how our system adapts to different team
sizes and assesses scalability and effectiveness. For
statistical robustness, we averaged localization error
over 100 Monte Carlo experiments.

Fig. 5 depicts the Root Mean Square Error (RMSE)
between the actual location value and the predic-
tion made from the proposed E-MAQL during target-
tracking. We conducted a comparative analysis, bench-
marking our E-MAQL control approach against a
Cramér-Rao Lower Bound (CRLB)-based method. No-
tably, the RMSE of the CRLB-based control consis-
tently decreases faster throughout the time steps com-
pared to other methods. This can be attributed to UAVs
dynamically adjusting their positions to minimize the
CRLB. While RMSE values exhibit slight fluctuations
across control schemes, results indicate that E-MAQL-
based control with three and four UAVs achieves track-
ing performance comparable to the optimal CRLB-
based control.

RMSE =

√√√√ 1

T

T∑
t=1

(TNt − ˆTN t)2 (1)

where TNt is the actual position of target m at time
t, ˆTN t refers to the estimated target position, and T
is the total time of target-tracking.

In the target-tracking system, the power consumed
by UAVs is a critical challenge owing to their restricted
power capacity. Our E-MAQL approach tackles this
issue by mitigating the zig-zag movement pattern ob-
served in UAVs during target-tracking, significantly
reducing power consumption. This improvement is
particularly significant as most UAV power usage is
associated with their mobility or flight. To evaluate the
effectiveness of E-MAQL, we conducted a comparative
analysis with the algorithm used in [11] when employ-
ing 3 UAVs for target-tracking.

Fig. 6 compares the average power consumed by
UAVs when employing two different algorithms, QL
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Fig. 6. Comparison of average power consumption by UAVs
using QL and E-MAQL algorithms with 3 UAVs.

Fig. 7. Comparison of latency between traditional RAN and
O-RAN.

and E-MAQL, with a total of 3 UAVs involved in
the target-tracking system. This substantial reduction in
power consumption observed with E-MAQL highlights
its efficiency in optimizing UAV movements during
target-tracking. The E-MAQL algorithm mitigates the
zig-zag movement pattern typically associated with
QL, resulting in smoother and more energy-efficient
trajectories for the UAVs. Consequently, this improve-
ment in power consumption with E-MAQL demon-
strates its effectiveness in enhancing the energy effi-
ciency of the target-tracking system, contributing to
prolonged UAV operation and mission duration.

In our comparative analysis focusing on latency, we
evaluated the performance of two network architec-
tures: traditional RAN and O-RAN. Latency encom-
passes propagation delay, transmission delay, process-
ing delay, and queueing delay. The simulation results
demonstrate that O-RAN consistently outperforms tra-
ditional RAN in terms of latency across various sce-
narios. This is mainly because O-RAN’s decentralized
architecture with distributed radio units (RUs) and
virtualized baseband units (BBUs) minimizes propa-
gation delays by reducing data travel distance com-
pared to centralized processing in traditional RAN. In

TABLE II
PERFORMANCE METRICS OF DQN-BASED IDS

Metric Value
Precision 76.19%
Recall 80.50%
F-measure 0.78
Accuracy 92.49%

additon, O-RAN’s use of open interfaces and stan-
dardized protocols optimizes transmission processes,
while its flexibility allows for advanced transmission
technologies, such as beamforming, further reducing
transmission delays. Moreover, O-RAN’s virtualized
architecture enables efficient processing resource allo-
cation, reducing processing delays compared to fixed-
function hardware in traditional RAN. Finally, O-
RAN’s support for network slicing and edge computing
minimizes queueing delays by prioritizing traffic and
dynamically allocating resources. Fig. 7 illustrates the
latency comparison between traditional RAN and O-
RAN, highlighting the significant latency reduction
achieved with O-RAN.

We evaluated the proposed DQN-based IDS by mea-
suring its FPR (see Eq. 2). The recorded FPR for our
IDS reveals that 6% of the instances flagged as mali-
cious were actually benign. This indicates a 6% chance
of the IDS incorrectly identifying normal behavior as
an attack. While a lower FPR is preferred to reduce
false alarms and enhance system efficiency, the 6%
FPR suggests that the IDS effectively distinguishes be-
tween normal and malicious behavior. However, there
is still room for improvement in the IDS algorithm
to minimize false positives and improve accuracy in
detecting genuine threats while keeping false alarms to
a minimum. Further analysis and refinement of the IDS
model may be necessary to optimize its performance
and achieve a lower FPR.

FPR =
FP

FP + TN
(2)

where FP represents the number of false positives
(instances incorrectly classified as attacks), and TN
represents the number of true negatives (instances
correctly classified as non-attacks).

The performance of our IDS is assessed based on
four crucial classification metrics: Accuracy, Precision,
Recall, and F1-score. Table II illustrates the recorded
values for the total instances, where 1042 instances
were considered. Among these, 800 instances were
allocated for training, 200 for testing, and 52 were
identified as false data instances.

To evaluate the efficacy of the proposed security
framework, encompassing IDS, AES, and LW-AES, we
conducted comprehensive tests to measure the accuracy
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of the target-tracking system across various scenarios.
These assessments were crucial for understanding the
system’s performance in the presence of attackers who
injected false data into the network. To this end, we
measured the accuracy of target-tracking both with and
without the presence of attackers (see Eq. 3). Without
any attackers, the accuracy of the tracking system
is notably high, at 95%, indicating its robust perfor-
mance under normal conditions. However, when one
UAV acts as an attacker, the accuracy drops to 53%,
demonstrating malicious entities’ disruptive impact on
the tracking system. With two UAVs as attackers, the
accuracy decreases further to 41%, highlighting the
compounding effect of multiple attackers on system
performance.

Our deployed security framework effectively mit-
igated attackers’ impact, notably improving tracking
accuracy. In scenarios with one UAV acting as an
attacker, accuracy increased to 86%, showcasing the
framework’s effectiveness. With two UAVs as attack-
ers, accuracy further rose to 80%, highlighting the
robustness and reliability of our security measures in
enhancing the target-tracking system.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP represents the number of true positives
(instances correctly classified as attacks), TN repre-
sents the number of true negatives (instances correctly
classified as non-attacks), FP represents the number
of false positives (instances incorrectly classified as
attacks), and FN represents the number of false neg-
atives (instances incorrectly classified as non-attacks).

V. CONCLUSION

In this study, we developed E-MAQL, an algorithm
enhancing target-tracking accuracy while minimizing
energy usage. Additionally, we introduced a compre-
hensive security framework for secure target-tracking
with UAVs in urban environments within the O-RAN
architecture. Our framework integrates IDS and secure
communication protocols like AES and LW-AES to
mitigate threats such as data manipulation and commu-
nication interference. Through extensive simulations,
we validated our approach’s effectiveness in ensuring
data integrity, authenticity, and confidentiality between
UAVs and ground-based entities like MEC nodes. Our
experiments demonstrated the framework’s robustness
against false data injection attacks, showcasing signif-
icant improvements in accuracy and FPR. These find-
ings underscore the importance of proactive security
measures in UAV-based communication systems within
the O-RAN architecture, fostering advancements in
secure target-tracking technologies.
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